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. Introduction

At any phase of the life of a drug or a vaccine, scientists need to
ompare different (bio)assays, two most of the time. As examples:

� This paper is part of a special issue entitled “Method Validation, Comparison
nd Transfer”, guest edited by Serge Rudaz and Philippe Hubert.
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• A new assay, aimed at describing a biological response and
expected to have better characteristics than an assay of reference
(higher throughput, cheaper, etc.), is compared to the reference
assay.

• A device used in clinical chemistry that should be replaced by a
new one.
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• When an element of a (bio)assay is modified, the assay in the new
settings is compared to the assay in the old settings.

• A (bio)assay that should be transferred from a laboratory to
another one, etc.

http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:walthere.dewe@scarlet.be
dx.doi.org/10.1016/j.jchromb.2009.01.027
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In each of these examples, the objective is to demonstrate that
he new (bio)assay or the (bio)assay in the new settings generates
esults that are comparable to those obtained by the old (bio)assay
r by the (bio)assay in the old settings. We could talk about equiv-
lence.

Equivalence could be demonstrated at different levels, depend-
ng on the context and on the objective of the (bio)assay of interest.
ndeed, equivalence should be demonstrated on average for some
bio)assays, while for others, equivalence should be demonstrated
n the individual results.

The objective of this paper is to review different statisti-
al methodologies that could be used to assess the equivalence
etween methods.

. Study design, assumptions and warnings

.1. Design

Let us consider a study aiming at assessing equivalence of two
bio)assays.

It is recommended to include in the study design as many factors
r sources of variation as possible [1–3]. The rationale is to avoid dis-
overing any issue in the routine application of the new (bio)assay.
heses factors could be operator, equipment, time, result level, etc.

The results generated by both (bio)assays could come from the
ame set of samples analyzed by both (bio)assays or from two sets
f samples having the same origin and identically prepared, a set
eing analyzed by a (bio)assay and the other being analyzed by
he second (bio)assay. The former corresponds to a paired case, the
atter to an unpaired case.

The objective of the paper is not to review all the designs that
ould be envisaged in an assay comparison study. So we will focus
n the easiest case where no other factor than the assay is con-
idered. Should multiple factors be included in the study, it is
ecommended to collaborate with a statistician to elaborate the

ost appropriate study design and model to maximize the chances
o reach the objective while taking into account some possible con-
traints (e.g. material availability, time, costs, etc.).

.2. Notation

The number of results generated by assay i (i = 1, 2) is noted Ni;
he results generated by both assays are noted

{
X11, X12, . . . , X1N1

}
nd
{

X21, X22, . . . , X2N2

}
. In case of paired case, the number of

esults generated by both assays is the same (N1 = N2 = N) and we
ssume that X1i is paired to X2i, i = 1, . . ., N.

.3. Normality assumption

We assume that the results generated by each assay are normally
istributed:

X1i ∼ N(�1, �2
1 )

X2i ∼ N(�2, �2
2 )

here � and �2 are the parameters of the normal distribution rep-
esenting the mean and the variance (dispersion around the mean),
espectively.

In a paired case, the results generated by both assays are corre-
ated and we note � the correlation coefficient. If the results are not
aired, we could assume the absence of correlation between them

� = 0).

In case the normality assumption could not be made, an
ption is to transform the data to normalize them and then
o apply the foreseen methodology on the transformed results.
or continuous variables, a frequently used function is the (nat-
77 (2009) 2208–2213 2209

ural) logarithm when the distribution of the data is positively
skewed.

Note that it is possible to identify the most appropriate transfor-
mation to be used [4,5].

2.4. Test for difference: inappropriate approach

Any methodology that would be based on a test including the
equivalence in the null hypothesis is not appropriate in the context
of assay comparison [1–3,6–10]. As a consequence, it is recom-
mended not to use it or to cautiously consider its result as indication
only.

Let us consider an example to explain why it is not relevant.
Let us assume that the objective is to demonstrate that two assays
generate comparable results on average and that the two-sample
t-test is performed, i.e. considering on one hand the equality of the
means as null hypothesis (H0) and on the other hand their difference
as alternative hypothesis (HA):

H0 : �1 = �2
HA : �1 /= �2

Non-equivalence is concluded if the p-value is lower than the
significance level ˛, or equivalently if the 100(1 − ˛)% confidence
interval of the difference between the means does not contain 0.

The length of the confidence interval depends on the number of
results. On one hand, in case of a non-(analytically or biologically)
relevant difference and large sample size, the confidence interval
could not include 0 and we could conclude to non-equivalence. On
the other hand, in case of a (analytically or biologically) relevant dif-
ference and small sample size, the confidence interval could include
0 and we could conclude to equivalence.

Similarly, the approach that consists, after regressing X2i over X1i,
in comparing the intercept and the slope to 0 and 1 [11,12], respec-
tively, is aimed at assessing the difference and is not recommended
to evaluate the equivalence.

2.5. Correlation: inappropriate approach

Considering the Pearson correlation coefficient as the lonely
statistics to assess an assay comparison is not appropriate either
[2,13]. Indeed, the results obtained by two assays could be highly
correlated with a systematic difference between them. Moreover,
the range of the results also leverages the value of the correla-
tion coefficient: the higher the range, the higher the value of the
correlation coefficient.

3. Equivalence on average

Let us suppose that the objective is to demonstrate equivalence
on average only.

The first elements to specify, before generating the data, are
acceptance limits �1 and �2, describing the highest difference
between the (bio)assays that can be considered as not relevant on
an analytical or biological point of view. Frequently, the limits are
symmetric: �1 = −�2.

The approach consists in performing two one-sided t-tests
[1–3,5–9]:

Test 1 :

{
H01 : �1 − �2 ≤ �1
HA1 : �1 − �2 > �1{
and Test 2 :
H02 : �1 − �2 ≥ �2
HA2 : �1 − �2 < �2

Considering a type I error rate ˛, equivalence is concluded if the
(1 − 2˛)% confidence interval of the difference between the means
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Fig. 1. Device 1 versus device 2 plot with comparable results.

that the results generated by both assays are comparable. In the
third case, equivalence cannot be concluded due to an excess of
variability with the second device. In the last case, the explanation
of the non-equivalence is the lack of correlation.

Fig. 3. Device 1 versus device 2 plot with difference in variance.
210 W. Dewé / J. Chromato

s within the interval [�1,�2], the confidence interval being given
y:

�̂1 − �̂2) ± tdf;1−˛�̂�1−�2

hen �̂1 and �̂2 are the estimates of the mean results of both assays,
ˆ�1−�2 is the standard error of the difference between the means
nd df the degrees of freedom associated to the standard error. The
etails to calculate parameter estimates, standard error and degrees
f freedom can be found in Appendix A ([(E.1–E.4, E.6, E.7)].

Despite the fact that a (1 − 2˛)% confidence interval is used to
ake the decision, the type I error rate of this test is ˛. Indeed, both
ull hypothesis could not be true: if the difference is smaller than
1, it could not be larger than �2, and vice versa. As a consequence,
erforming the tests 1 and 2 at the ˛ level consists in comparing
�̂1 − �̂2) − tdf;1−˛�̂�1−�2 and (�̂1 − �̂2) + tdf;1−˛�̂�1−�2 to �1 and
2, respectively, i.e. comparing the (1 − 2˛)% confidence interval to

�1,�2].

. Equivalence on individual results

If the objective is to demonstrate the equivalence on individual
esults, the recommendation is to design the study to obtain paired
esults. On one hand, it is consistent with the objective and on the
ther hand, it makes the analysis easier. So let us assume, in this
ection, that the results are paired.

Different methodologies are available to assess equivalence,
epending on the study design:

Concordance correlation coefficient [13]. To be used only if the
samples are independently selected from the same population.
In other words, it cannot be used if different clusters exist in the
samples that are selected or prepared for the study.
Bland–Altman [2,14–17]. To be used if the samples are not inde-
pendently selected from the same population. For example, if
samples are prepared at different levels of concentration, the
Bland–Altman approach could be used while the concordance
correlation coefficient could not be calculated.
Probabilistic approach [3,8]. To be used in the same context as
Bland–Altman.

.1. Concordance correlation coefficient

The concordance correlation coefficient indicates how the data
re distributed around the 45◦ line through the origin, called the
oncordance line, if we plot the results obtained with assay 1 against
hose obtained with assay 2.

The concordance correlation coefficient is estimated as follows
the formula to estimate the Pearson correlation coefficient is given
y [(E.5)] in Appendix A):

ˆ c = 2�̂

(�̂1/�̂2) + (�̂2/�̂1) + ((�̂1 − �̂2)2/�̂1�̂2)

he concordance correlation coefficient �̂c varies between −1 and
. In case of a perfect equivalence, i.e. all the points on the con-
ordance line, it is easy to check that �̂c is equal to one. In case of
on-equivalence, �̂c is much smaller than 1 or even close to 0 in
ase of absence of correlation (�̂ = 0).

Equivalence is concluded if the observed concordance coeffi-
ient is higher than an equivalence limit c, fixed before generating
he data.
To illustrate the use and the meaning of the concordance corre-
ation coefficient, four different examples of device comparison are
epresented from Figs. 1–4. The calculated concordance correlation
oefficients are 0.95, 0.75, 0.17 and 0.07, respectively (see Table 1).
onsidering c = 0.7 as threshold, equivalence is concluded for the
Fig. 2. Device 1 versus device 2 plot with a systematic difference.

examples illustrated in Figs. 1 and 2. Despite the systematic differ-
ence that we can observe in Fig. 2, it is small enough to consider
Fig. 4. Device 1 versus device 2 plot with no correlation.
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Table 1
Summary statistics of the device comparison examples.

Example 1 Example 2 Example 3 Example 4

Device 1 Device 2 Device 1 Device 2 Device 1 Device 2 Device 1 Device 2

�̂ ± �̂ 81.7 ± 6.39 81.3 ± 6.40 80.8 ± 6.12 85.5 ± 6.33 82.2 ± 5.21 81.0 ± 13.0 79.9 ± 4.74 80.0 ± 5.19
�̂ 0.95 0.96 0.25 0.07
�̂c 0.95 0.75 0.17 0.07
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4.2.1. Examples
Let us come back to the four examples already discussed in Sec-

tion 4.1. Limits of agreement and tolerance intervals are detailed
in Table 1, and the Bland–Altman plots are illustrated in Figs. 5–8.

Fig. 5. Bland–Altman plot of the device comparison study with comparable results,
where the limits of acceptance are ±7.5 in the result units (solid lines).
wo one-sided t-test [−0.18,1.07] [−5.26,−4.20]
imits of agreement [−3.52,3.77] [−8.10,−1.91]
olerance interval [−3.77,4.65] [−8.30,−1.16]
robability 0.001 0.059

.2. Bland–Altman

The Bland–Altman approach could be considered as visual as
ell as inferential. Indeed, a so-called Bland–Altman plot could

e used as a visual tool to assess the assay comparison, and lim-
ts of agreement could be used to decide on the equivalence of both
bio)assays by comparing them to acceptance limits.

The Bland–Altman plot represents, on the Y-axis, the individ-
al differences Di = X1i − X2i (i = 1, . . ., N) versus the mean results

¯ i = (X1i + X2i)/2 on the X-axis. If both assays are comparable, the
ndividual differences should be randomly distributed around the

horizontal line, whatever the result level.
In addition to the visual inspection, limits of agreement, giving

nformation about the distribution of the individual differences,
ould allow us to decide whether two (bio)assays are compa-
able. Before taking a decision, we have to identify acceptance
imits describing the highest tolerable difference between individ-
al results, and the proportion of individual differences that we

ike to be within these acceptance limits. Similarly to equivalence
n average, both assays are considered as comparable if the limits
f agreement are within the acceptance limits.

Note that there is no requirement about covering any targeted
alue (0 for example). Indeed, in concordance with the comments
bout the inappropriateness of the tests for difference, covering a
arget is not mandatory as long as the acceptance limits are mean-
ngful. For example, if the limits of agreement do not cover the
quivalence target (0 for example) and if the mean difference esti-
ate is within the acceptance limits, equivalence could still be

oncluded if the variability of the difference is small enough to
btain most of the individual difference within the limits as well.

Assuming the variance of the differences is homogeneous across
he range of results, limits of agreement are computed as follows:

ˆ D ± z1−(˛/2)�̂D

here �̂D is the estimate of the mean individual differences (see
ormula [(E.8)] in Appendix A for details), �̂D is the standard devi-
tion of these differences (see formula [(E.9)] in Appendix A for
etails) and z1 − (˛/2).the (1 − ˛)% percentile of the N(0,1) normal
istribution.

In case the assay comparison has to be assessed in a very large
ange, it is likely that the assumption of variance homogeneity
oes not hold. In such a case, a common practice is to try a log-
rithm transformation and compute the limits of agreement on
he log transformed data, i.e. the individual difference of the log
ransformed results. By taking the anti-log of these differences, we
btain the ratio of the actual results. As a consequence, an alterna-
ive Bland–Altman plot is used: individual ratio on the Y-axis and
eometric mean on the X-axis.
In order to better control the risk of wrongly concluding equiv-
lence, tolerance intervals could be used instead of the limits in
greement. Indeed, such intervals take into account the (lack of)
recision in the estimation of the mean difference as well as the
lack of) precision in the estimation of the variance of the individ-
[−2.66,5.23] [−2.19,2.01]
[−23.6,22.1] [−13.4,11.0]
[−25.2,27.7] [−14.2,14.0]
0.562 0.278

ual differences [18], while the limits of agreement considers only
the latter. The former is managed by the inclusion of the standard
error of the mean difference in the variance term. The lack of preci-
sion in the estimation of the variance is managed by considering a
t-distribution, with N − 1 degrees of freedom, instead of the Normal
distribution. The tolerance intervals are calculated as follows:

�̂D ± tN−1;1−(˛/2)

√
1 + 1

N
�̂D

where tN−1;1−(˛/2).the (1 − ˛)% percentile of the Student distribution
with N − 1 degrees of freedom.

Note that these (tolerance) intervals have a limitation in case
of a systematic difference between the assays [19,20]. Indeed, in
case of bias, the risk to have a bound outside the acceptance limits
increases while the proportion of individual differences within the
acceptance limits could still be acceptable (the location of the other
bound would compensate).
Fig. 6. Bland–Altman plot of the device comparison study with systematic differ-
ence, where the limits of acceptance are ±7.5 in the result units (solid lines).
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Fig. 7. Bland–Altman plot of the device comparison study with difference in vari-
ance, where the limits of acceptance are ±7.5 in the result units (solid lines).
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Both assays are considered as comparable if the probability is

F
l

ig. 8. Bland–Altman plot of the device comparison study with no correlation, where
he limits of acceptance are ±7.5 in the result units (solid lines).

onsidering ±7.5 as acceptance limits and 0.95 as proportion of
ndividual differences within these limits, only the first example

ould be successful. Although there is some evidence that both
xamples 3 and 4 do not represent comparable methods, the exam-
le 2 displaying a small systematic difference between the devices

s borderline as the lower limit of agreement and the lower bound

f the tolerance interval barely missed the target.

Let us consider a fifth example illustrating the comparison of two
io-assays. In this example, the samples are prepared at five differ-
nt levels of concentration, each being analyzed by each assay. The

ig. 9. Bland–Altman plot of an assay comparison study where the limits of acceptance
evels of concentration.
77 (2009) 2208–2213

acceptance limits are ±5 in the result units and 0.95 is targeted as
proportion of individual differences within the acceptance limits.
The Bland–Altman plot is illustrated in Fig. 9. The limits of agree-
ment are [−4.50,4.05] and the tolerance interval is [−4.66,4.20]. As
both intervals are within the acceptance limits, we conclude that
both assays have comparable results.

Let us assume that the limits of agreement are within the accep-
tance limits and that the tolerance interval is not. As the difference
between these intervals is only due to sample size, it would be
preferable to take a decision based on the tolerance interval. The
decision could be to increase the sample size in order to have more
information that would possibly give us more evidence about equiv-
alence.

Note that the assumption of homogeneous variance seems rea-
sonable by looking at the Bland–Altman plot.

4.3. Probabilistic approach

In the same philosophy as the methodology detailed in the pre-
vious section, the decision to conclude equivalence could be based
on a calculated risk of having an individual difference outside our
acceptance limits.

The risk corresponds to the probability of having an individual
difference out of the acceptance limit, i.e. the sum of the probabil-
ity that the difference is above the upper acceptance limit and the
probability that the difference is below the lower acceptance limit.
This risk can be estimated as follows:

�̂ = P(X1 − X2 < �1) + P(X1 − X2 > �2)

= P

(
tN−1 <

�1 − (�̂1 − �̂2)√
�̂2

1 + �̂2
2 − 2r�̂1�̂2

)

+ P

(
tN−1 >

�2 − (�̂1 − �̂2)√
�̂2

1 + �̂2
2 − 2r�̂1�̂2

)

small enough, i.e. smaller than a maximum tolerable proportion.
This approach does not have the same border effect than the one

linked to the tolerance intervals. Indeed, even if a (single) bound of
the tolerance interval barely misses the target due to a systematic

are ±5 in the result units. The successive changes of symbol indicate the different
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[

[17] K. Dewitte, C. Fierens, D. Stöckl, L.M. Thienpont, Clin. Chem. 48 (2002) 799.
[18] R.W. Mee, Technometrics 26 (1984) 251.
[19] B. Boulanger, W. Dewé, A. Gilbert, B. Govaerts, M. Maumy, Chemometr. Intel.
W. Dewé / J. Chromato

rror, the probability could be smaller than the tolerable proportion
f the opposite tail of the individual difference distribution is largely

ithin the acceptance limits. So while well controlling the risk of
alsely concluding equivalence, the probability of success is always
igher than the one obtained with a tolerance interval approach
hen the assays are truly comparable [3].

In case of a multiple levels of concentration, if the assumption
f homogeneous variance is valid, the probability �̂ could be cal-
ulated over the whole range. However, if there is evidence that
he variance is not homogeneous, the risk can be calculated by
evel using the variance estimates obtained at each level. In the
atter case, the variance could be modeled to gain precision, which
equires the help of a statistician.

.3.1. Examples
Regarding the first four examples, the risk values can be found in

able 1. This probabilistic approach confirms that the observations
nd conclusions reached with the Bland–Altman analysis.

About the fifth example, the risk to have an individual difference
utside the acceptance limits is 0.048. It is small enough, i.e. less
han 0.05, to conclude of equivalence.

. Discussion

Proving the equivalence of two (bio)assays requires specific
ethodologies. So the Student two-sample t-test or any other anal-

gous hypothesis test, although frequently used, are relevant only
n the cases where the objective is to detect differences and as
onsequence, are not appropriate in our context.

Proving equivalence is more exigent and challenging than prov-
ng a difference. The difficulties to prove equivalence are the
etermination of relevant acceptance limit(s) and the fact that the
ppropriate methodologies require a larger sample size.

A potential key of success of a (bio)assay comparison is to
evelop a scientific partnership between the scientist in charge of
he (bio)assay and the statistician. Both of them have the comple-

entary skills to design the study, to analyze the data and to take
good decision.

If the objective is to assess the equivalence on average, the rec-
mmendation is to use the two one-sided t-test.

If the objective is to assess the equivalence on individual results,
he recommendation is to use the probabilistic approach as, in con-
rast to the limits of agreement or the tolerance intervals, it does not
uffer from the border effect when a systematic difference exists.
egarding the concordance correlation coefficient, fixing a mean-

ngful acceptance limit could be difficult.

cknowledgements

The author would like to thank Philippe Hubert and Serge Rudaz
or giving the opportunity to write a review about method compar-
son in this special issue.

ppendix A

ean estimate of assay 1 : �̂1 = 1
N1

N1∑
X1i (E.1)
i=1

ean estimate of assay 2 : �̂2 = 1
N2

N2∑
i=1

X2i (E.2)

[
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Standard deviation of assay 1 : �̂1 =

√∑N1
i=1(X1i − �̂1)2

N1 − 1
(E.3)

Standard deviation of assay 2 : �̂2 =

√∑N2
i=1(X2i − �̂2)2

N2 − 1
(E.4)

Pearson correlation coefficient (paired case only):

�̂ =

N∑
i=1

(X1i − �̂1)(X2i − �̂2)

(N − 1)�̂1�̂2
(E.5)

Standard error of the mean difference:

if paired case :

�̂�1−�2 =
√

�̂2
1 + �̂2

2 − 2�̂�̂1�̂2

N
, (df = N − 1) (E.6)

if unpaired case :

�̂�1−�2 =
√

�̂2
1

N1
+ �̂2

2
N2

, (df = N1 + N2 − 2) (E.7)

Mean estimate of individual differences:

D̄ = 1
N

N∑
i=1

(X1i − X2i) (E.8)

Standard deviation of individual differences:

�̂D =

√∑N
i=1(Di − D̄)

2

N − 1
(E.9)
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